重生之北国科技-第241部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
————————
随着科学家们的脑洞大开,一个行之有效的方法,真的被找到了!
更为可喜的是,这个方法思路非常简单,而且特别适合这个时代。
在完全在不改变设备技术水平的情况下,可以提高晶圆的制程!
之所以这个方法没有被广泛宣传,是因为所有的晶圆厂都在使用。大家都在用的技术,自然就失去了神秘性和趣味性。
灯下黑,指的就是这种情况。
第479章 真假1微米(2)
半导体加工工艺,本质上就是一个在硅晶圆上,不断曝光,蚀刻的过程。
而这个工艺的提升的过程,就是曝光时所用的底片图案,不断进行增密的一个过程。
在大家的传统印象里,底片的增密,就是底片精度的提高过程。增密底片图案,除了提高光刻机精度,就没有别的办法了吗?
在我们的日常生活当中,有个不恰当的例子,那就是套色印刷(或者是彩色打印)。
三色墨水,每个打印的精度都是相同的,但是三色重合打印,单色就变成了彩色!
颜色的精度,就从单色的8位,上升到了256位!
在2005年之后,由于工艺制程的提升,最小可分辨特征尺寸(MRF)已经远远小于光源波长,利用 DUV 光刻机已经无法一次刻蚀成型。
既然无法一次刻蚀成型,那就多刻蚀几次,每一次刻蚀一部分,然后拼凑成最终图案。
从每个部分图形的加工过程来说,用的都是原有的加工方法和设备,但它可以实现更高精度的芯片加工。
它就是《多重图案化技术》!
《多重图案法》就是将一个图形,分离成两个或者三个部分。每个部分按照通常的制程方法进行制作。整个图形最后再合并形成最终的图层。
————————
按照这个理论,图形精度简直可以无限分割下去。
但实际上,这个方案也有它的局限。
光刻机,做到了极限,是因为光波波长的缘故。
图案分割,做到最后,也会有这个问题。
当光罩上图形线宽尺寸接近光源波长时,衍射将会十分明显。
光刻机内部光路对于光线的俘获能力是有限的,如果没有足够的能量到达光刻胶上,光刻胶将无法充分反应,使得其尺寸和厚度不能达到要求。
在后续的显影、刻蚀工艺中起不到应有的作用,导致工艺的失败。
所以用这个方法,步进到7nm,就做不下去了。因为从原理上就出现了问题。
7nm之后,必须使用EUV(深紫)光刻机,那个对中国禁运的光刻机,就是这个道理。
在这个阶段(1微米),它还不是个问题。阻碍晶圆工艺进步的主要原因,来自生产设备,工艺,而不是原理。
————————
任何事情都有利有弊。
这种技术的优点非常突出。那就是不需改变现有设备,或者是做很少的改变,就可以达到提高晶圆工艺的要求。
但弊端也很突出。
第一个弊端,麻烦。
这个技术的思想雏形,第一次出现在130nm阶段,第一次完整出现,则是在30nm阶段。
为什么出现得这么晚?
每道图层,都要进行分解,想想就麻烦得很啊。这个方法,完全是没有办法的办法。
换个高精度的光刻机及其配套工艺,一下子不就解决了嘛!这也是在30nm之前,基本上无人往这个方向思考的原因。
其次,成本。
加工一块芯片所需要的加工工序数目增加了。原来一次加工的步骤,现在要两次,甚至四次才可以。
这在商用芯片的制造上,是很致命的。
例如,如果只采用一次加工,良品率为7成。这完全是个可以接受的数字。但是当一次加工,改成四次加工的时候,整个工艺的良品率就会下降到2成。
多重图案法的核心,是把一张图片分解成多张。这里还会存在分图片互相校准的问题。所以,在实际的生产过程中,采用这种工艺以后,其良品率会极大降低。
用刚才的例子数据来计算,良品率,会从7成,下降到不到一成!
英特尔之所以在10nm节点,耗费了接近5年的时间,跟他们的多重四图案曝光(SAQP)良率较低,有关系。
对于一个芯片厂来说,良品率就是他们的饭碗。
如果在14nm的时候,芯片成本是300美元。升级芯片生产工艺的目的,自然是因为进程越高,占用的晶圆面积越小。采用新工艺后,芯片的生产成本,也自然降低。同样功能芯片,它的成本在10nm时代,应该降为150美元才对。
但这种工艺,增加了工序的数目,实际上已经增加了芯片的加工成本。再加上良品率的问题,采用新方法生产出来的芯片,弄不好成本还高于300美元了。
在这种情况下,为什么要量产10nm
在intel占据垄断地位的时候,表现就更为突出。这也是PC的CPU连续多年,速度根本没有怎么提升的根本原因。
————————
但这个理由,对全彩无效,对光电无效。
全彩,乃至光电,并不是一间芯片公司,这个10nm工艺解决的是有无问题,生死问题。
这就与花为一样。花为是卖芯片的吗?
不是!他是卖5G系统!
有了这300美元的芯片,几万美元的系统就能卖出去!没有,死路一条!
这里的进程升级,节省的不是那150美元的成本。它的价值是几万美元!
全彩也是同样道理。有了这十几美元的芯片,上千美元的显示器就能卖出去!这款芯片,代表的不仅仅是十几美元的加工成本。
在这种情况下,良品率不要说3成,就是1成,甚至只有百分之一,也必须要上。
当然,良品率还是需要提高的。
良品率的提高,就是个磨耐心,磨时间的过程,没有什么了不起的。
LED时代,大家经历过,LCD,现在正在经历。所有人都有了信心。
————————
“还真有好东西啊!这个项目一做成,你可就牛B大了啊!”
看着老乡在黑板上,一顿比比划划,两个人都听明白了。
这个项目如果做成。它的影响力实在是太大了。
TFT…LCD,以前中国没有,你做出来了,填补了国内空白,别人会夸一下。但他绝对意识不到这里的难度真有这么大。
但晶圆一样吗?
中国在一微米这个地方卡了多久?
1微米的技术攻关,国家在531计划时期(1986年),就提出来了。而等到908工程的投产,已经是1997年的事情。
前后两个国家级计划,整整走了11年!就是到现在,1992年,也已经走6年多了。
而且更重要的是,这个技术的极限,不仅仅是用2微米设备来生产1微米芯片。理论上来讲,它甚至可以实现0。5微米!
连909计划都不需要了!
三个国家级计划!
继续提高可不可以,例如0。25微米?
呵呵!
凭此一个技术,中国就可以在半导体工艺上,实现对世界先进水平的反超!
更重要的是,这个技术需要什么开发成本吗?
所有的设备,都是现有设备啊!
这个项目只要做成,不仅仅是成永兴,包括严亮和叶静,都会名声大噪。一次搞出三个工程院院士,绝对没有问题。
第480章 真假1微米(3)
“这个项目要严格保密!多重图案技术,绝对不可以外传。它会一直保密。一直到我们的真1微米工艺出来,直到我们的晶圆产业走上正轨。”
成永兴的一句话,就浇灭了两个伙伴的热情。
“真1微米?怎么工艺还出来真假了?”
“对,这个多重图案化技术,就是个假的。”
“那真的是什么样的?”
两个人都来了兴趣。孙悟空有真假,是因为有人冒充。怎么工艺还有真假?能实现,就是真的啊!
“真的工艺技术,是靠真功夫,而不是这种取巧的方法。”
“工艺上哪有取巧的方法,你的ODF难道不是取巧?”
叶静一撇嘴,对这种奇谈怪论不以为意。
这位同乡,是个实用主义渗透到骨子里的人。黑猫白猫论,天天挂在他的嘴上。
为了达到目的,想出来的各种奇思怪想,经常让人觉得匪夷所思。
这些方法,在科班出身的人眼里,很多都是离经叛道,甚至是大逆不道的事情。
别人搞自动化,他搞人海战术。别人搞流水线,他用小推车。
好好的一个LCD车间,现在被分割成了大大小小的一堆小房子。人员出来进去,要不断的沐浴更衣。
为了解决这个问题,大家不得不考虑在车间内部,再搭建一个空中走廊,为这些操作员工及工件提供一个快速通道。
————————
王青山一帮人,没事的时候,也对成永兴的奇怪思维方式进行了一些总结。
最后大家达成了一致看法,那就是他的这种思维方式,完全是由于其没有受过正统教育造成的。
这个年轻人,出名太早,太快,导致他根本来不及接受正常教育。在这种情况下,他还要做事情,自然,乱七八糟的东西就来了。
不过让大家比较无法理解的,不是这名年轻人的才华,而是他的运气。这些乱七八糟的东西,反科学,反传统,反理论的方法,居然还能用!
这让一大批学工艺的,学设备设计的硕士,和博士,到哪里说理去?
————————
“不谈这个问题了。多重图案化技术,一定要严格保密。它的密级甚至在ODF之上,我们要做好三,五年之内,不对外宣布的心理准备。”
“这又是为了什么?为什么有成果不宣布?”
两个人倒不是对出名感兴趣。
自从进了LCD项目组,这一年多,两个人是一篇论文都没有发表过,反而是童子军的师弟,师妹们,还在不断发表成果。
但他们也不嫉妒。随着视野的不断提高,人的想法也慢慢变了。既然走上了这条不归路,就继续走下去把。
他们现在只是单纯的好奇。
随着全彩的TFT…LCD的面世,ODF工艺早晚也会被人知道。虽然这种解密的过程不是主动的,但天下没有不透风的墙。
TFT…LCD生产车间,虽然禁止外人参观,但是设备厂家的人总要在场吧。整个生产线上涉及到的设备,上百种,也就是说,大量设备厂家的人,都能够进入到生产车间。
TFT…LCD也不是第一天才出现,它只是第一次出现在大尺寸的显示器里。
这个生产过程中,该有什么,不该有什么,大家也都知道。就是以前不清楚,现在也该清楚了。别的不说,没有毛细法这一件事情,本身就把秘密泄露出去了。
————————
“不为什么。就是这样。”
这个技术的影响力,在后世看,也许还感觉不到什么,因为这已经是一个被普遍采用的技术。
但在这个时代,它就是核弹级的技术。它可以使晶圆工艺,直接向前推进十年!
中国的晶圆工艺,比国外落后十年,靠着一个工艺,就可以追平,甚至赶超。
那这样不是挺好的吗?
好什么?
这个技术一旦流传出去,后果是什么?
4。86直接就变成100。86了!
全世界的半导体工艺,直接就跳入到纳米时